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Abstract. In order to study the dynamical behaviour of the Little-Hopfield model of a neural 
network, we demonstrate a new perturbation theory for the retrleval of memory. This theory 
is characterized by a time-dependent perturbation variable in powers of which are calculated 
the overlap m(t) as well as other order parameters such as the non-retrieval parameter r ( t ) ,  1 
k i n g  time. The second-order approximation in OUT perturbation scheme shows that as time 
increases, the trajectons of the model system represented in the 4 ) - r ( t )  plane converge onto 
a c w e  which is identical to the soocaled ‘freezing’ line altained through the replica symmetric 
solution. In the course of developing our pembafion theory we generalize the exact approach 
proposed by Gardner et al. We also re-phrase previous approaches such as the theory by Amari 
and Maginu and by Coolen and Sherrington within the scheme of our perhahation theow. 

1. Introduction 

The complex dynamical behaviour of fully connected attractor networks [1,2] have been 
the subjects of growing interest in recent years. Among others, the LittleHopfield model 
[3,4] for auto-associative memory bas been investigated intensely as a prototype of such 
random frustrated systems, Although there are quite a number of approaches [5-15] to the 
dynamics of this model, the difficulties included in these approaches are rather serious. 

Gardner et a1 [5] proposed the exact approach in which the formal expressions for the 
timedependent order parameters are given on the basis of the path integral formulation. 
They showed that the number of such order parameters required to describe the dynamics 
increases with the time step. However, these formal expressions are extremely intricate 
and only solutions up to the second time step were obtained. An alternative approach 
by Amari and Maginu [7] (hereafter referred to as AM) is based on a crucial assumption 
that the noise term involved in the local alignment field for each neuron is a random 
Gaussian variable. On the basis of this assumption the recursion relations are obtained 
which give the time evolutions of the two order parameters of interest, i.e. the overlap 
and the variance of the Gaussian distribution. The qualitative properties of this model are 
fairly well reproduced by these recursion relations. However, it was shown by the computer 
simulations performed by Nishimori and Ozeki [I21 that the above-described assumption is 
not fulfilled, at least when the rehieval of the memory fails. Coolen and Sherrington 1131 
(hereafter referred to as CS) followed the line of the AM approach further by calculating 
the probability distribution of the noise term using the replica technique. Their approach 
also starts from the assumption that the distribution function depends only on two order 
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parameters, but there is no concrete foundation for this assumption, just as there is no 
guarantee for the above-described assumption underlying the AM theory. 

With this situation, it is important to develop a theory keeping as far away from such 
assumptions as possible. 

In this paper we propose a novel approach on the basis of the perturbation theory. 
Making use of Gardner’s exact expressions for the order parameters, we take perturbation 
expansions using a time-dependent perturbation parameter. The recursion relations for the 
relevant order parameters are obtained without introducing any assumption in the first-order 
approximation, and the necessity of using an assumption arises only in the second-order 
approximation. It is also worth mentioning that the extent of our approach, i.e. the region 
of validity of the perturbation expansion, is found from the theoretical scheme itself. 

This paper is organized as follows. In section 2 we give the outline of the Little- 
Hopfield model and define the important order parameters, i.e. the overlap m( t )  between 
the state of the system at time t and the pattern to be retrieved, and the ‘non-retrieval 
parameter’ r ( t ) .  In section 3 we generalize the exact approach due to Gardner et a! and 
derive explicit expressions for some of the order parameters, including r ( f ) ,  at any time step 
t .  We also evaluate the exact forms of noise distributions for the first few time steps. This 
generalization of the exact approach opens a path towards the establishment of a perturbation 
theory which we fully explain in section 4. First, we introduce a time-dependent perturbation 
parameter. The extent of our theory is derived from the condition that this parameter stays 
small at each time step. We see that this condition is fulfilled when the retrieval of the 
pattern is successful (hereafter to be referred to as the ‘retrieval case’). Then, we evaluate 
the time development of the system in the first-order approximation and show that the 
AM theory is consistent with this first-order approximation in our theory. Furthermore, the 
probability distribution of the noise term turns out to be the Gaussian function as is assumed 
in the AM theory. We also calculate the time evolution of the system in the second-order 
approximation, from which we can see that the discrepancy between our theory and the AM 
theory appears in this second-order approximation. Our theory predicts that the trajectories 
represented in the m(t)-r(t)  plane converge onto the so-called ‘freezing’ line determined 
by the replica symmetric analysis of CS. 

In section 5 we show that the results of our simulations lend support to the above- 
mentioned prediction of our perturbation theory. Summary and discussions are given in 
section 6. 

S Gomi and F Yonezawa 

2. The Little-Hopfield model 

The LittlsHopfield model system [3,41 consists of N formal neurons, each of which is 
described by an king variable St@) (i = I .  2, . . . , N ) .  We adopt the zero-temperature 
parallel dynamics; namely, at each step f ,  all neurons update their states deterministically 
according to the rule 

where hi(r) is the local alignment field at time t .  The strength of the interaction Jij between 
neurons i and j is determined from a set of aN patterns {t:] 01 = 1.2, .  . . , U N )  according 
to the Hebb rule 
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Each component tr of the pattern p is a quenched random variable taking +1 or -1 with 
equal probability. 

One of the most relevant order parameters in this model is the overlap m ( t )  = m”(t)  
between the state of the system at time t and the configuration of the pattern v to be retrieved 
m(t) being defined by 

From equation (1) the time evolution of this variable is derived as 

in which zi(t) = (/+ Xj#[  EP+&fS , ( t )  is the noise term. The assumption of the AM 
theory 171, as well as that as the cs theory [131, is made for the probability distribution of 
this noise term. 

Another important order parameter which has been discussed in the literature is the 
‘non-retrieval parameter’ r (t): 

The r(t) parameter reflects the interference effects of non-rehieved patterns. 

the microscopic rule described by equation (1). 
Now our theme is to evaluate the dynamical behaviours of these order parameters from 

3. Generalization of the exact approach 

To begin with, we try to generalize and improve the exact approach due to Gardner et al  
151. The generating function in the exact approach is defined by 

where m(0) is the initial overlap and TI denotes the @ace over the spin variable Si@) = f l  
(i = 1,2,. . . , N, t = 0, 1,2,. . .). The angular bracket refers to the average over the 
possible realization of the (YN random patterns [e:). The symbols e ( x )  and S ( x )  respectively 
indicate the step function ( @ ( x )  = 0 for x c 0 and @ = 1 for x 0) and the Dirac 8 function. 
Equation (6) is expressed in term of the integral form 

xexp iNhom(0)+iNCArM,+iNorC+ffNlnW+NInZ ) (7) ( tat 

where C, W and 2 are the functions of the integration variables which appear in equation (7). 
The explicit forms of these functions are defined as follows: 
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where TI' denotes the trace over the spin variable without suffix S(r) = 51 (I = 0, 1,2,  . . .). 
The integrations are performed by making use of the steepest decent method; 

consequently, the saddle-point equation is obtained for each of the integration variables 
in the following form: 

where (A)w and (A)z (e.g. A = S ( f )  for M,, A = nfm: for klrr) denote the 'average' with 
respect to W of equation (9) and Z of equation (10) respectively. defined by 
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From the definition of the generating function, it was shown by Gardner et a1 151 that 

m ( f )  = M I .  (21) 

r ( t )  = r r t  (22) 

the overlap at time t is given as the solution of the saddle-point equation for M r :  

In a similar way the relation 

holds for the non-retrieval parameter r( t ) .  It is easily seen that if we are to calculate the 
right-hand side of equations (21) and (22) explicitly, all the solutions of the saddle-point 
equations up to the (t  - 1)th step must be evaluated. Accordingly, all of the non-zero 
solutions of the saddle-point equations for the integration variables must be regarded as 
the order parameters as well. This means that the number of order parameters increases 
according to the increase of the time step. 

Table 1. The exact solutions of saddle-point equations for order parameters, 
~ ~~ ~ 

Order parameter Suffix Gardner er al Present work 

t=t '  
r c r' 
t < r' 
r > r '+ 1 
r = o  
t # o  

I c r' 
t = t' 
f =- r' 
r = r' 
r c r '  

I 
5 

0 

i tanh-' (m(0)) 
0 
0 

equation (23) 
i 

equation (24) 
equation (25) 

0 

0 

In table 1 we show a list of the parameters; some of them were previously obtained 
by Gardner et a1 as shown. In addition to these parameters we find that there are some 
parameters which have saddle-point equations that are explicitly solved, i.e. krt, and rrrt. 
Note that both of these parameters have the saddle-point equations of type (19). The 
integrals involved in these saddle-point equations are carried out by using the Gauss integral 
l-, dt e-" = ,,6 and the following expressions are obtained: m 

krr, = iv,,, (t  < t') 

in which Vt,tx and L$l are defined by 
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and 
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~ ( ‘ 4  1111 - = o (otherwise). 

We emphasize that the important order parameter r ( t )  = rrt is formulated for the first time 
in this paper. 

From table I we see that only three kinds of parameters, Mt, qtr, and ut,, for t > t’, 
are left unsolved. The saddle-point equations (llH13) for these parameters have similar 
forms and become simple by the use of our results k,, = I, i.e. 

. .  

1 7 
x exp - (Y rt,tx,x,~S(f + l )S( t ’  + 1) - 01 k , ,afS(t )S(f ’  + 1) 

OSt<t‘ O(I<I’ 

(28) 
where the following variables are substituted for A, i.e. A = S(t)  for MI, A = S(t)S(t ‘)  for 
ql,, and A = S(t)S(t’ + I)xp for ull,. Equations (23)-(25) and (28) enable us to obtain the 
solutions for larger time steps, beyond the second time step achieved by Gardner et ~l (see 
figure 3). Moreover, as we see in the next section, the perturbation theory is developed on 
the basis of the results presented here. 

We now discuss the exact solution of the probability distribution D,(z) of the noise term 
z i ( f ) .  This distribution function is expressed as 

[ 

We calculate the right-hand side of this equation in a similar way to that used for equation (6). 
We then compare the results thus obtained to the distribution functions derived from the 
analysis of cs [13]. Comparisons are made as follows. First, we calculate the exact 
distribution at the time step t as well as the values of m(t)  and r ( t )  using our exact approach. 
Then, we use these m(t )  and r ( t )  to obtain the corresponding distribution function in the 
cs scheme. 

In the retrieval case, both functions, our result and the formalism due to cs, coincide 
very well with each other as shown in figures ] (a)  and (b). However, figures I(c) and (d) 
show that they significantly deviate from each other even in the first time step when the 
retrieval fails (hereafter to be referred to as the ‘non-retrieval case’). In other words, the 
error of the overlap at each succeeding time step in the cs theory amounts to several per 
cent which is not negligible when accumulated. This fact indicates that there are some cases 
where the assumption used in the cs theory is not necessarily fulfilled. Recently, Ozeki and 
Nishimori [I51 arrived at a similar conclusion from their computer simulations. 
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Figure 1. The probability distribution of the noise term D,(z). 7Xe exact solutions (solid 
curves) are compared to the functions (dashed curves) obtained by the approach of cs; (a )  and 
(b) respectively correspond to the first and second time step in the retrieval case while ( e )  and 
( d )  respectively correspond IO the fim and second time step in the non-retrieval case. The values 
of the order parameters at each time step are written in the figures. 

4. Perturbation theory 

4.1. Perturbation expansion 

In the preceding section, we have obtained the rather simple equation (28) which defines 
the order parameters m(t) ,  qtr, and U,:.. Although in principle it is possible to evaluate 
an explicit form exactly for each of these parameters from this equation, it is in practice 
impossible to carry out this task 

One possible way out of this difficulty is to solve equation (28) by means of some 
perturbation scheme. In this subsection we present a basic framework for our perturbation 
theory as well as a perturbation parameter used in this theory. 

Let us begin with the results for parameters k,,, and rtf,. obtained in the preceding section. 
As is seen from equations (23)-(27), each of the explicit solutions for these parameters is 
written in terms of power series in U:,,: 

~ : P + I  = iVl+lf (t  = t ' )  (30) 
klt,+l = i(w+1, + U ~ ' + I ~ , U , , ,  + U,,+I,LIU,L-I, + v,,+lr,v,,,.-lu,8-l, + ' '  .) (t  e 2') (31) 

( f  = t') (32) r,,' = 1 + 2iq,-1,u,:-t + 
rlt' = iq,:, + iqf-wut:-l + iq,+Iv,w + r : tu t~ t&~t+~  + . , . (33) 
where S,,, denotes the Kronecker delta symbol. Taking advantage of this fact, we assume 
that the values of parameters U:,, satisfy ut,, << 1 for all t and t' up to a time step r (5  > 1, 

2 + 2iq,-~(u,,-~ + utl--1ut-it-z) + .. . 
(t < t') 



4768 

t' e t < r) .  The extent of this assumption, i.e. the condition for this assumption to be valid, 
is clarified in what follows by the method of reduction. Substituting the expressions for ktt, 
(equations (30) and (31)) into equation (28) and expanding in terms of ut,,, we obtain the 
following forms for the parameters Mr+iqlr+tr (t 6 t) and u,+i,, (t 6 r)  at t i- I time 
step: 

S Gomi and F Yanezawa 

where erf(x) denotes the error function (erf(x) = % 1; dt e-f1) and the definitions for E, , ,  

c,,, and utlh are given by 

(A) c,,, = - erf 

where Aflh and RIth are defined by 

We see from equation (32) that rTr = I + O(u). Using this relation, equations (35) and 
(36) are written as 

%+li = c r ( l +  O(V)) (42) 
%+lf = E z ( O ( V ) ) .  (43) 

Therefore, OUT requirement ut,' << 1 is also valid at the time step r + 1 if ut,, << 1 for 
t' < t < r and the condition 

is satisfied. In other words, our theory is reliable as long as the relation 

is fulfilled. 
M, >> G (45) 

In the retrieval case the overlap m(t) = M, increases with the time step, whereas the 
non-retrieval parameter r ( t )  = rt, tends to decrease. Therefore, condition (45) is valid in 
this case if it i s  satisfied at the outset. On the other hand, it is not fulfilled in the non-retrieval 
case. Thus, the extent of our theory is found in the theoretical scheme itself, 
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We notice here that there are several small parameters in the right-hand side of 
equations (34)-(36), i.e. E, and uTl for t < T. In order to make the expatision more 
systematic and to make ow theory clearer, we express the parameters urt in these equations 
in terms of E. In other words, we adopt parameter cl as a new perturbation paranieter in our 
theory. From equations (42) and (43) and the relation E, - ~ ~ - 1  e O(s,), equations (34), 
(35) and (36) are written as 

Note that when condition (45) is satisfied, the first term in equation (46) is written as 
the sum of an infinite number of the first-order terms in 6,: 

Therefore, we leave this term as it stands in expansion (46) without expanding it in E,. 
The perturbation expansion of the remaining parameters, i.e. qtl, and rttp, are now 

discussed. We derive the following expression for qIp, in a similar way as we derived 
equations (34)-(36): 

where Dy = -&e-Y2 and the definitions for Rj;: and <%) are given by 
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Using equations (32). (33), (42), (43) and (50) and the definition of R,,,,, equation (41). 
we obtain the relation in a self-consistent manner: 

From equations (32), (47). (48) and (53). it is shown that 

r,+lr+l = I + zcz + (1 + k r - z r  - hur-zr)c; + O(c3). (55) 

Finally, we have to consider the time dependences of cr-zz and ur-2r which appear in 
the second-order terms of equations (46) and (55). It is shown from the definitions of cI-zr 
and uT-ar (equations (38) and (39)) that these quantities are not simply expressed as the 
power series in c. In order to overcome this difficulty we study the behaviour of cI-zr and 
~ ~ - 2 ~  with the help of computer simulations. The results of our simulations for c,-zr and 
~ ~ - 2 ~  are shown, respectively, in figures 2(a) and (b) ,  starting from four different initial 
conditions for m(0) in the case of LY = 0.1 and N = 2500. For each value of the initial 
overlap the retrieval is successful. From these figures we observe that cT-zr approaches 
zero and ur-zl diverges to bo when t + 00 in the reeieval case. However, the value of 
the non-retrieval parameter rir is finite from equation (5). Therefore, the term with crz-2r 
is supposed to be cancelled out by the higher-order terms in E ,  and, hence, we introduce an 
assumption that this term can be omitted. Substituting M, = m ( t ) ,  rrr = r( t ) ,  cI-zT = ~ ( t )  
and cT = c( f )  into equations (46) and (55) we obtain the final forms for the important order 
parameters as 

r ( t  + 1) = 1 + 2E(r) + (1 + Zc(r))c*(t)  

with the time-dependent perturbation parameter 

(56) 

(57) 

In following sections we show the results of our theory based on equations (56)-(58). 

(b) 600 

500 
400 

8 300 
200 
100 

0 

?. 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 

z 7 

Figure 2 l i m e  development of and ~ ~ - 2 ~ .  The results of OUI simulaions for c.-zr and 
az-zr are respectively depicled in (a) and (b) for the case of 01 = 0.10 and H = 2500. Different 
curves in each figure correspond to the different initial overlaps m(0).  
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4.2. Appmximation up tojrst order 

Keeping the term up to first order in c ( t ) ,  we obtain from equations (56) and (57) 

m(t + 1) =erf - (&) . .  
r ( t +  1) = 1 + 2 ~ ( t ) .  

We compare our results with the recursion relations obtained by the AM theory, the latter 
being expressed as 

In our theory, as we have seen in the preceding subsection, m(t)  = 1 - O(c( t ) )  and 
r ( t )  = 1 + O ( < ( t ) ) .  Therefore, the AM theory is perfectly comparable with our perturbation 
theory up to first order in c ( t ) .  

In addition, our calculations for the distribution functions Dl(z )  of the noise terms, 
which are performed in a similar way to the calculations for the parameters M, or u,+l, in 
the preceding section, give the Gaussian distributions as the leading-order approximations: 

Thus, our perturbation theory up to first order supports the AM theory and provides the 
basis for the assumption used in the AM theory. 

4.3. Approximation up to second order 

We now turn to the results of our perturbation theory up to second order in 6( t ) ;  namely, 
we take all the terms in equations (56) and (57) into account. 

It is obvious that the recursion relations of the AM theory, equations (61) and (62), do 
not coincide with those of our theory when the second-order terms are taken into account. 
The noise distributions Dt ( z )  also deviate from the Gaussian forms and are written as 

We now show from equations (56) and (57) that the value of parameter r ( t )  is determined 
from the value of the overlap m(t )  at the same time step. In other words, the trajectories in 
the m(t)-r( t )  plane of the system with various initial conditions fall onto one master curve, 
which is described as 

r ( t )  = r (m( t ) )  = 1 + - exp(-[eK’ (m(t)) l2)  (+O(c3(t))) .  (65) ( E -  
The derivation of this equation is given in appendix A. Note that equation (65) is valid 
irrespective of the value of c( t ) .  Relation (65), when plotted in the m(t)-r(r) plane, was 
called the freezing line in the original articles of Coolen and Shemngton [13]. They define 
the freezing line as a line outside the region to which an exponentially small number of 
microscopic configurations (S;) belong. (Here, ‘outside’ the region means the region with 
larger values of m(t )  and r( t ) . )  As was shown in the erratum to their paper [16], the true 
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Figure 3. The trajectories in the m-r plane. The open circles with lines represent the 
aajecmries obm'ned from OUT simulations W g  f" 14 different initial conditions for m(0); 
i.e. 0.05 < m(t) < 0.1, and r(0) = I, where U = 0.1 and N = 2500. The crosses represent the 
exact uajectories. The dotted c w e  is the freezing lie. The short dashes represents the curve 
expressed by quadon (69. The vajectories predicted by the AM theory fall on the long dashed 
curve. 

freezing line is not exactly expressed by equation (65). However, it is known [I71 that the 
deviation of the freezing line from equation (65) is negligibly small (see figure 3). 

Our theory predicts that the time evolutions of the order parameters take place at the edge 
of the region within which almost all of the microscopic configurations are involved. On 
the other hand, the trajectories according to the AM theory in the m(t)-r( t )  plane converge 
onto a different curve. In the following section we show that the results of our computer 
simulations support the prediction of ow perturbation theory, rather than that of the AM 
theory. 

As the time step proceeds, the value of c ( t )  becomes negligibly small as is mentioned 
in section 4.1. In this case, we obtain the recursion relation from equation (56) including 
the overlap only: 

The stationary value of the overlap is given by putting m(t + 1) = m ( r )  in equation (66). 
It is interesting to note that the resulting equation for the stationary state is the same, up to 
the second order in ~ ( f ) ,  as that for the equilibrium state obtained by h i t  er al [I81 using 
the replica symmetric analysis [I]. The maximal storage capacity cr, of the Little-Hopfield 
model obtained from equation (66) is almost equal to the well known value 

cr, ~0.138. (67) 
Recently, the equilibrium state of the Little-Hopfield model has been analysed [ 19,201 in 

the framework of the replica-symmetry-breaking (RSB) ansatz [21]. It is quite an interesting 



D Y M ~ ~ C S  of the Little-Hopfield model 4173 

problem to clarify the relation between the results of these studies of equilibrium states and 
of our theory on the dynamics. 

5. Results of our simulations 

In order to clarify the validity of our theoretical results explained in the preceding sections, 
we show in this section the results of our simulations of the Little-Hopfield model. 

In figure 3 the trajectories in the m(t)-r(t)  plane are shown for 14 different initial 
conditions in the case of 01 = 0.1 and N = 2500. The results obtained from our simulations 
are described by open circles, The crosses represent the results evaluated from our exact 
solutions (demonstrated in section 3) up to the fourth step. The perfect agreements between 
the trajectories of our simulations and of the exact solutions indicate that the finite-size 
effects in our simulations are negligibly small. 

The dotted curve in this figure represents the freezing line which is determined from the 
equations due to Coolen and Shenington [16]. On the other hand, the short dashes denote 
the curve described by equation (65). Note that it is difficult to find the differences between 
these curves. It is clearly seen from this figure that the trajectories for the retrieval cases 
converge to the freezing line as our theory predicts (in section 4). On the other hand, the AM 
theory predicts that the trajectories fall on the curve with long dashes which is also plotted 
in this figure. Although the AM theory was believed to be correct in the retrieval case, it is 
apparent that this theory, which is consistent with our theory only within the extent of the 
first-order approximation, fails to describe the above-mentioned behaviour in the m(t)-r(r) 
plane. 

Thus, our simulations support the prediction of our perturbation theory and, 
consequently, support our theory itself. A remarkable point to make is the fact that both 
our theory and our simulations indicate the obvious relationship between the long-time 
trajectories and the freezing line. The relationship is especially clear in the retrieval case. 
Since the freezing line is defined as a kind of boundary between the allowed and non-allowed 
regions for the existence of microscopic configurations, the convergence of the long-time 
trajectories towards this line suggests that either retrieval or non-rehieval is pursued along 
the edge of reality. 

6. Summary and discussion 

In this paper we study the dynamical behaviour of the Littlc+Hopfield model. Our present 
work is summarized as follows. 

First, we improve the exact approach. 
(i) The explicit solutions for some of the order parameters, including the non-retrieval 

(ii) The exact solutions up to the fourth step are evaluated (figure 3). 
(iii) The probability distributions 4 ( z )  of the noise term are calculated exactly. It is 

shown that there are some cases in which the assumption used by Coolen and Shemngton 
is not necessarily fulfilled. 

Second, on the basis of the results listed in [l], we propose a perturbation theory. 
(i) The equations for the time developments of the order parameters, obtained in the 

approximation up to first order, have a form consistent with those of the theory by Amari 
and Maginu [7]. However, a discrepancy between these theories arises when we include 
the second-order terms in the expansions. 

parameter r ( t ) ,  are obtained at arbitrary time steps. 
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(ii) Our theory predicts, within the approximation up to second order, that the trajectories 
in the m(t)-r(t) plane converge to the 6ez ing  line in the retrieval case. This prediction is 
supported by the results of OUT computer simulations. 

(iii) From the second-order approximation, we show that the stationary state is almost 
the same as the equilibrium state obtained by the replica symmetric analysis. 

The perturbation theory proposed in this paper will also be applicable, by choosing an 
appropriate perturbation parameter, to the present model with finite temperatures and other 
fully connected networks such as the Shemngton and Kirkpatrick model [1,22] for a spin 
glass. It is extremely interesting and important to compare the dynamical properties of these 
models by this general approach. 
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Appendix A. Derivation of equation (65) 

From equation (57) we obtain 

where the relation 
d .J;? - erf ' (x)  = - exp[(efi'(x))2] dx 2 

has been used. Therefore, c ( f )  is expressed as 

= E e x p [ - ( e f i l ( m ( t  + 1)))21(1+ c(t)E(t) +o(c'(t))). 

Substituting equation (A2) into equation (57). we obtain expression (65) in section 4. 

(A21 
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